If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+8x+16=24
We move all terms to the left:
8x^2+8x+16-(24)=0
We add all the numbers together, and all the variables
8x^2+8x-8=0
a = 8; b = 8; c = -8;
Δ = b2-4ac
Δ = 82-4·8·(-8)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{5}}{2*8}=\frac{-8-8\sqrt{5}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{5}}{2*8}=\frac{-8+8\sqrt{5}}{16} $
| 24–6x=30 | | 1.7=m-9 | | 4=o-5 | | 43=n-7 | | 27=4/3x+19 | | F(x-5)=4(x-5)-9 | | 7=2+5(z*10) | | (x-1)(x+4)=(x-3)(x+3) | | (2d-1)/3-9=-4 | | 12x²-204x+630=0 | | -3+13=5z | | 4r^2+r=13r | | 0.5a-1,3=1.5a-0.7 | | z+10-3=11 | | (2x+5)^2=6+4x^2 | | x-90=20x | | 108=12c | | 0.5h^2+h=4h | | 4(x+1)=x+x-6 | | 5(2p-(4p+20))=25 | | 10-8x=-2x+-4x | | 2(x-2)-3(x+1)=7-(2x+5) | | 3085/x=0.0122 | | 0.25g^2=2g | | 5(3x+8)=41+66 | | 0.22(x+9)=0.2x+3.7 | | 3-t=4(t+7) | | 2x+316=2 | | 5m*7=70 | | 7x+18=22 | | 5y=3-4y | | 1+0.5x=0.33x+4 |